Best Practices for Licensing of Genomic Inventions

Jack Spiegel, Ph.D
Senior Advisor for
Technology Transfer Operations
Office of Technology Transfer
National Institutes of Health

DRAFT

WORK IN PROGRESS

Comments and suggestions are invited

What We Fear

- Inhibit Innovation
- Inhibit Competition
- limit access to tools Slow Research
- Shift from Basic to Applied Research

What Grantees Fear

- No Good Deed Goes Unpunished
- Slippery Slope to Gov't Regulation
- Easier Said Than Done
- Chill Licensing Interest
- Gov't Should Mind Its Own Business

Not All Innovations Require Further R&D to Meet Goals

Examples in Genomics

- Bulk Sequences
- Plasmids
- Cloning Tools/Vectors
- Libraries
- Databases
- Software
- Lab Techniques

If significant R&D is not needed

Consider

Not

Patenting

Potential Benefits

- Conserve Resources
- Commercially viable tools can be licensed without IPR
- Incremental improvements still advance field through publication

Not all Patents Require Exclusive Licensing

- Market sufficient to support competition
- Background Rights
 Genus/Species
 Product/Method of Use
- Bundles/Combines with Licensee's own Proprietary Technology
- Broad Enabling Technology
- Research Uses

Exclusive Licenses

Ensure Appropriate Scope

Ensure Expeditious Development

Appropriate Scope

- Limit to specific indications or fields of use
- Limit to specific territories
- Commensurate with Licensee's ability and commitment to develop

Expeditious Development

- Include developmental milestones/benchmarks
- Require performance-based royalty payments
- Monitor & enforce performance; include provisions to modify and terminate
- Sublicensing provisions & requirements

Take-Home Message

The good that patents do lives after them

The rest can be fixed by good licensing

So Go For The Good